yahooニュース 産経新聞、首相「腹を割って意見交換」 7、8日に訪韓し尹大統領と会談 岸田文雄首相は1日(日本時間2日)、7~8日の日程で韓国を訪問し、尹錫悦(ユン・ソンニョル)大統領と会談する方向で調整(ちょうせい)していると明らかにした。訪問先(ほうもんさき)のガーナで記者団の取材に答えた。首相は尹氏が3月に来日(らいにち)した際(さい)、首脳同士が相互(そうご)に訪問する「シャトル外交」の再開(さいかい)で合意(ごうい)しており、その第1弾(いちだん)となる。 続いて、日本政府は4月28日に韓国を輸出手続き簡略化などの優遇措置の対象国となる「グループA(旧ホワイト国)」に再指定(さいしてい)する方針を発表したが、首相の訪韓(ほうかん)で成果(せいか)を示(しめ)せるかが焦点(しょうてん)になると書いていました。 日韓関係が改善されているようでうれしい記事でした。
We assume that the person's money demand behavior satisfies following statement
$\frac{M_t}{P_t} = L(y_t,R_t)$
where M means demand of nominal money, P means price index, R means prevailing rate of interest on some relevant assets. Variable y makes function L increase and variable R makes function L decrease.
A Formal Model
consider a hypothetical household that seeks at time $t$ to maximize the multiperiod utility function :
$u(c_t,l_t) + \beta u(c_{t+1},l_{t+1}) + \beta u(c_{t+2},l_{t+2}) + ...$
here the $c_t$ and $l_t$ are the household's consumption of goods and leisure, respectively during the period $t$.
Given above assumptions, the household's budget constraint for period $t$ alone can be written as following statement
$P_ty + M_{t-1} + (1 + R_{t-1})B_{t-1} = P_tc_t + M_t + B_t$
Where B means Bond price. In this assumption, the left side means the total resources available, and the right side means the total expenditure available from the household. To take account of those constraints, first note that the constraint for $t + 1$ can be written as
$B_t = \frac{P_{t+1}(c_{t+1} - y) + M_{t+1} - M_t + B_{t+1}}{1+R_t}$
When the period $t+1$, we can write above equation to following that
$B_{t+1} = \frac{P_{t+2}(c_{t+2} - y) + M_{t+2} - M_{t+1}+ B_{t+2}}{1+R_{t+1}}$
We can eliminate $B_t$ from 3rd equation, and finally arrive at the following equation :
$(1 + R_{t-1})B_{t-1} = [P_t(c_t - y) + (M_t - M_{t-1})] + (1 + R_t)^{-1}[P_{t+1}(c_{t+1} - y) + (M_{t+1} - M_{t})] + (1 + R_t)^{-1}(1 + R_{t+1})^{-1}[P_{t+2}(c_{t+2} - y) + (M_{t+2} - M_{t+1})] + ...$
This single equation then describes the household's entire intertemporal budget constraint, incorporating the constraints for each single period, when the planning horizon is infinite.
A Leisure
A leisure $l_t$ is negatively related to consumption and positively related to real money holdings.
$l_t = \psi (c_t,m_t)$
now we can find maximizing value of first equation of formal model.
$u[c_t,\psi (c_t,\frac{M_t}{P_t})] + \beta u[c_{t+1},\psi (c_{t+1},\frac{M_{t+1}}{P_{t+1}})] + ...$
Lagrangian Expression
To carry out the maximization problem, we can formulate a Lagrangian expression $L_t$ as follows
$L_t = u[c_t,\psi (c_t,\frac{M_t}{P_t})] + \beta u[c_{t+1},\psi (c_{t+1},\frac{M_{t+1}}{P_{t+1}})] + ... + \lambda _{t}[(1+R_{t-1})B_{t-1} - [P_t(c_t - y) + (M_t - M_{t-1})] - (1+R_{t})B_{t} - [P_{t+1}(c_{t+1} - y) + (M_{t+1} - M_{t})] - ...]$
set the resulting expressions equal to zero, we have
$ \frac{\partial L_t}{\partial c_t} = 0$ , $ \frac{\partial L_t}{\partial M_t} = 0$
which mean net marginal utility of consumption increased and net marginal utility of a unit of money holdings additional.
$ S_t $
댓글
댓글 쓰기