기본 콘텐츠로 건너뛰기

令和5年5月3日気になるニュース

yahooニュース 産経新聞、首相「腹を割って意見交換」 7、8日に訪韓し尹大統領と会談  岸田文雄首相は1日(日本時間2日)、7~8日の日程で韓国を訪問し、尹錫悦(ユン・ソンニョル)大統領と会談する方向で調整(ちょうせい)していると明らかにした。訪問先(ほうもんさき)のガーナで記者団の取材に答えた。首相は尹氏が3月に来日(らいにち)した際(さい)、首脳同士が相互(そうご)に訪問する「シャトル外交」の再開(さいかい)で合意(ごうい)しており、その第1弾(いちだん)となる。 続いて、日本政府は4月28日に韓国を輸出手続き簡略化などの優遇措置の対象国となる「グループA(旧ホワイト国)」に再指定(さいしてい)する方針を発表したが、首相の訪韓(ほうかん)で成果(せいか)を示(しめ)せるかが焦点(しょうてん)になると書いていました。 日韓関係が改善されているようでうれしい記事でした。

Web Crawling - 네이버 금융 데이터 크롤링하기

인터넷 웹이나 SNS 같은 소셜 네트워크 등 온라인에서 공개되어 있는 데이터를 수집하는 기술을 웹 크롤링이라고 한다. 전문업체들이 개발하는 경우가 대부분이나, 개인이 프로그램을 만들어서 사용하는 경우도 있다. 웹 문서에서 원하는 데이터를 추출할 수 있으며, 이를 위해서는 기본적인 HTML문서의 구조를 알아야 한다.

네이버 주가 데이터 크롤링

주가 데이터 크롤링을 위해 다음과 같이 필요 모듈을 import한다.
from urllib.request import *
from bs4 import *
import requests
import re
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

함수 inputCompany()는 회사의 입력을 받고 종가 추출을 위한 재귀함수를 호출한다.
def inputCompanyAndDays():
  Company = input('원하는 회사의 종목코드를 입력하세요 :')
  extractLastPrice(Company)
  return

out[1] 원하는 회사의 종목코드를 입력하세요 :005930

함수 extractLastPrice()는 인자로 Company를 입력받고 종가추출을 위한 페이지 넘버 PN을 계산하여 크롤링을 하는 실질적인 프로그램이다. 크롤링된 주가데이터는 변수 pList에 저장된다.
def extractLastPrice(Company):
  pList = []
  DN = int(input("종가 추출 기간을 입력하세요(20의 배수가 되도록 상향 조정합니다) : "))
  if DN / 20 == 1 :
      PN = int(DN/20) - 1
  else :
      PN = int((DN + 20)//20) - 1
  for k in range(PN) :
      req = Request('http://finance.naver.com/item/frgn.nhn?code={}&page={}'.format(Company, k+1))
      req.add_header('User-Agent', 'Mozilla/5.0')
      wp = urlopen(req)
      soup = BeautifulSoup(wp, 'html.parser')
      trList = soup.find_all('tr', {'onmouseover' : 'mouseOver(this)'})
      for j in trList :
        tdList = j.find_all('td')
        pList.append(tdList[1])
  pList.reverse()

  for k in range(len(pList)) :
      pList[k] = pList[k].get_text()
      pList[k] = int(re.sub(r'[^0-9]','',pList[k]))

  drawGraph(pList)

  return pList

out[2] 종가 추출 기간을 입력하세요(20의 배수가 되도록 상향 조정합니다) : 100

함수 drawGraph()는 인자로 pList를 입력받고 Visualization을 이행하는 함수이다.
def drawGraph(pList):
  graph = pd.Series(pList, index=range(len(pList)))
  plt.style.use('seaborn')
  plt.plot(graph, label = 'stock price')
  plt.legend(loc = 'upper left')
  plt.xlabel('Days')
  plt.ylabel('Price')
  plt.grid(True)
  plt.show()
  return 

Visualization

삼성전자의 최근 100일간 주가데이터를 불러와 그래프로 시각화하였다. 일일 주가데이터의 수치 데이터를 보고 싶다면 pList를 출력하면 된다.

주가의 이동평균(Moving Average)분석은 추후 따로 포스팅을 할 예정이다

댓글

이 블로그의 인기 게시물

Random Forest 파헤치기

Random Forest Random Forest Random Forest는 weak Learner로 Decision Tree를 이용하는 일종의 bagging Algorithm이다. (배깅 학습기라는 뜻은 아니다) Machine Learning 분야에서 Support Vector Machine과 같이 가장 많이 사용하는 분류모형 중 하나이다. Random Forest Class는 다음 특징을 가진다. Keyword Argument의 대부분은 DecisionTreeClassifier와 같다. Random Forest에서 Tree의 수가 많아질수록 예측에 유리하지만 시간이 많이 걸리고, 한계적인 이득은 체감한다. Random Forest의 Base Model로는 보통 Deep Tree를 많이 사용한다. Shallow tree는 상대적으로 분산이 작지만 상당한 편의를 발생시킨다. 반면 Deep Tree는 분산이 큰 반면 편의가 작으므로 여러 결과의 평균을 예측에 사용하면 분산을 줄이는 효과가 있다. Random Features Random Forest는 훈련 과정에서 무작위로 추출한 Feature Set만을 사용한다. 이는 모형들 사이의 Correlation을 감소시킨다 Missing Value와 관련된 문제를 효과적으로 완화시킨다. 오늘은 Random Forest와 Decision Tree의 기본 구조를 알고 있다고 가정하고 Keyword Argument 중 중요한 것들을 중심으로 소개하고자 한다. class_weight {class_label:weight} 형식의 클래스와 연결된 가중치이다. 만약 주어지지 않는다면, 모든 Class는 하나의 가중치로 되어 있다. 다중 출력 문제의 경우 dict 목록을 y 열과 같은 순서로 제공할 수 있다. 다중 출력(다중 레이블 포함)의 경우 자체 dict의 모든 열의 각 클래스에 대해 가중치를 정의해야 한다. 예를 들어 4개 클래스의 다중 레이블 분류 가중치는 [{1:1}, {2:5}, {3:1}, {4:1} 대신 [{...

Team Q Research

  Q research Naver blog Qraft에 계신 선배님과 서강대학교 학부생이 함께 만든 퀀트 리서치 팀입니다. 주로 Machine Learning과 Quantitative Finance 분야를 다루며, 최근 연구 분야는 ML분류기에서 나온 Accuracy를 확률로써 해석하기 위해 Probability Calibration을 통해 보정하고, Bet size를 정하는 Secondary Model로써 활용하는 것을 연구중입니다. 이외에도 Machine Learning 분류기와 Neural Network를 사용하여 투자 집행에 도움이 되는 실전 전략 연구를 수행하고 있습니다.

Portfolio Analysis, Mean Variance Frontier

  포트폴리오 이론에서의 기대수익률     포트폴리오 기대수익률은 개별 자산의 기대수익률의 가중치를 고려하여 만든 포트폴리오의 기대수익률이다 mean - variance space     자산 투자에 있어서 기대수익률을 위해서는 투자의 리스크를 감수해야 한다. 즉, 위험 한 단위가 증가할 때 기대수익률 또한 증가한다. Indifference Curve     Risk Averse의 성향이 많은 개인 투자자는 위험에 대해 기피하는 경향이 있다. 따라서, 위험 한 단위가 증가할 때마다 기대수익률을 더 많이 받으려고 하는 경향을 보인다. 따라서 무차별 곡선은 우상향하며, 기울기는 체증한다. 반면, Risk lover의 Indifference Cuve의 기울기는 체감한다. Portfolio Risk     포트폴리오의 리스크는 각 자산의 기대수익률간의 편차로 계산한다.  Example     2000년 1월부터 2020년 12월까지 기간동안 고려한 자산은 다음과 같다 스페인 국채 10년물  KOSPI 주가지수 S&P 주가지수 원유 선물 천연가스 선물 금 선물 구리 선물 import numpy as np import pandas as pd import matplotlib.pyplot as plt % matplotlib inline csv data의 변수명은 다음과 같이 정의한다 data : 수익률 데이터 cycle : 경기순환 사이클 데이터  import한 데이터는 다음과 같이 세가지 형식으로 분류한다 df = pd . concat ([ data . iloc [:, 1 :], cycle . iloc [:, 1 :]], axis = 1 ) # 전체 데이터 df_up = df [ df . cycle == 1 ] # 경기 확장기의 데이터 df_down = df [ df . cycle == 0 ] ...